Transport, Thermodynamic, and Volumetric Properties of a New Bridging Salt-Water System: [T1NO₃-CsNO₃-Cd(NO₃)₂]-H₂O

Maurice Abraham,^{*,†} Marie-Christine Abraham,[†] Ioannis Ziogas,[†] and Zdeněk Kodejš[‡]

Contribution from the Département de Chimie, Université de Montréal, C.P. 6128, Succ "A", Montréal, Québec, Canada H3C 3J7, and Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, Majakovského 24, 160 00 Prague 6, Czechoslovakia

Received October 14, 1992

Abstract: Until now, few salt-water systems have been investigated regarding the electrical conductance, the viscosity, the surface tension, the water vapor pressure, and the molar volume as functions of the temperature and the water concentration, from pure fused salts to dilute aqueous solutions. These systems referred to as *bridging systems* are of considerable interest because they allow one to establish a link between the two research fields: fused salts and dilute aqueous solutions. In this paper, we report the results on the measurements of the above-mentioned properties of a new bridging system whose salt composition is $0.467TINO_3-0.214CsNO_3-0.319Cd(NO_3)_2$. The results are discussed in terms of the BET model, the transition-state theory, and the hole and liquid quasi-lattice concepts. A remarkable feature of the equations used in the discussion lies in the fact that they can be applied over a large water concentration range, using few empirical parameters, in some cases only one. The empirical parameters are examined in relation to the nature of the ions and the effect of the temperature. Correlations that appear chemically significant are noted and discussed.

1. Introduction

Now and then, it has been suggested that more progress in the understanding of concentrated aqueous solutions could come from the consideration of solutions obtained by adding water to fused salts rather than concentrating dilute aqueous solutions. From this point of view, electrolyte systems which can be investigated in the liquid phase from pure fused salt to dilute aqueous solutions are of considerable importance.

In earlier publications, 1-3 some transport and thermodynamic properties of fused nitrate-water systems were studied as functions of the water mole fraction, over nearly the whole concentration range. These systems referred to as bridging systems are of considerable interest because they allow one to establish a link between the two research fields: fused salts and dilute aqueous solutions. Until now, few of them have been investigated regarding the following fundamental properties: the electrical conductance, the viscosity, the surface tension, the water vapor pressure, and the molar volume. These systems were obtained by addition of water to nitrate mixtures having the following fixed compositions, in mole fraction: 0.515AgNO₃-0.485T1NO₃ and 0.464AgNO₃- $0.436TINO_3-0.100M(NO_3)_n$, with M = Cs, Cd, and Ca. These molten salts mixtures were chosen because, around 373 K, they are liquid and completely miscible with water, so that the establishment of an experimental link between molten salts and aqueous solutions is facilitated.

Recently,⁴ preliminary results were obtained on the viscosity and the electrical conductance of a new bridging salt-water system whose salt composition is $0.467TINO_3-0.214CsNO_3-0.319Cd-(NO_3)_2$. According to Protsenko and Rubleva,⁵ this salt composition is that of a eutectic mixture whose freezing point is 357 K. In the present paper, we report the results of an investigation of the surface tension and the water vapor pressure of this system, together with the effect of the temperature on the electrical conductance, the viscosity, and the molar volume, from pure salt to pure water or dilute aqueous solutions, between 360 and 400 K.

Given the nature of the methodological approach adopted in this study, the discussion of the experimental results will be made using concepts which have been successfully applied to molten salts.⁶⁻⁸

2. Experimental Procedures and Results

The viscosities η were measured with an Ostwald–Ubbelohde viscometer, the densities ρ , by pycnometry, the specific electrical conductances χ , with a digital conductance meter YSI Model 32, the surface tensions σ , by the capillary rise method, and the water vapor pressures p, with a dew-point apparatus. The technical details and the measurement procedures are given in preceding papers.^{1,4,9-12} The experimental values of these properties are

© 1993 American Chemical Society

⁺ Université de Montréal.

¹Czechoslovak Academy of Sciences.

⁽¹⁾ Abraham, M.; Abraham, M.-C.; Ziogas, I. J. Am. Chem. Soc. 1991, 113, 8583-8590.

⁽²⁾ Abraham, M.; Abraham, M.-C. J. Phys. Chem. 1990, 94, 900–908.
(3) Trudelle-Abraham, M.-C. Ph.D. Thesis, Université de Montréal, 1987.

⁽⁴⁾ Ziogas, I.; Abraham, M.-C.; Abraham, M. Electrochim. Acta 1992, 37, 349-352.

⁽⁵⁾ Protsenko, P. I.; Rubleva, V. V. J. Chem. USSR 1955, 25, 221-225.
(6) Braunstein, J. In Ionic Interactions: From Dilute Solutions to Fused Salts; Petrucci, D. S., Ed.; Academic Press: New York, 1971; Vol. I, Chapter

^{4.} (7) Bockris, J. O'M.; Reddy, A. K. N. In *Modern Electrochemistry*; Plenum

Press: New York, 1970; Vol. I. (8) Abraham, M.; Abraham, M.-C. Electrochim. Acta 1988, 33, 967-974. (9) Abraham, M. C. Abraham, M.; Combay, A.; Sagatar, I. J. Cham.

 ⁽⁹⁾ Abraham, M.-C.; Abraham, M.; Combey, A.; Sangster, J. J. Chem.
 Eng. Data 1983, 28, 259-263.
 (10) Abraham, M.; Abraham, M.-C. Electrochim. Acta 1986, 31, 821-

⁽¹⁰⁾ Abraham, M., Abraham, M.-C. Electrochim. Acta 1960, 57, 821– 829.

⁽¹¹⁾ Sacchetto, G. A.; Bombi, G. G.; Macca, C. J. Chem. Thermodyn. 1981, 13, 31-40.

⁽¹²⁾ Kodejš, Z.; Sacchetto, G. A. J. Chem. Soc., Faraday Trans. 1 1986, 82, 1853-1864.

Table I. The Density ρ , Molar Volume V, and Excess Molar Volume V^{ex} of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Functions of Composition and Temperature^a

				$\rho \times 10^{-3}$	V × 10 ⁶	$V^{\text{ex}} \times 10^6$
<i>x</i> _w	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	(kg m ⁻³)	(m ³ mol ⁻¹)	(m ³ mol ⁻¹)
			T =	368.2 K		
0	0.467	0.214	0.319	3.960	60.99	· 0
0.198	0.375	0.172	0.256	3.796	51.9 7	-0.65
0.490	0.238	0.109	0.163	3.381	39.04	-1.24
0.630	0.173	0.079	0.118	3.053	32.99	-1.37
0.784	0.101	0.046	0.069	2.491	26.64	-1.23
0.814	0.087	0.040	0.059	2.342	25.44	-1.15
0.936	0.030	0.014	0.020	1.547	20.89	-0.54
1	0	0	0	0.962	18.73	0
			T =	376.2 K		
0	0.467	0.214	0.319	3.950	61.15	0
0.200	0.374	0.171	0.255	3.779	52.08	-0.61
0.400	0.280	0.128	0.191	3.530	43.09	-1.14
0.630	0.173	0.079	0.118	3.044	33.09	-1.40
0.707	0.137	0.063	0.093	2.787	29.96	-1.28
0.845	0.072	0.033	0.049	2.151	24.48	-0.92
0.900	0.047	0.021	0.032	1.808	22.33	-0.74
1	0	0	0	0.956	18.84	0
			<i>T</i> =	383.2 K		
0	0.467	0.214	0.319	3.936	61.35	0
0.151	0.396	0.182	0.271	3.817	54.43	-0.52
0.300	0.327	0.150	0.223	3.655	47.74	-0.89
0.430	0.266	0.122	0.182	3.470	41.91	-1.20
0.576	0.198	0.091	0.135	3.171	35.57	-1.35
0.725	0.128	0.059	0.088	2.707	29.36	-1.25
0.829	0.080	0.037	0.055	2.235	25.16	-1.03
1	0	0	0	0.951	18. 94	0

^{*a*} x_w , x_1 , x_2 and x_3 are the mole fractions respectively of H₂O, TlNO₃, CsNO₃, and Cd(NO₃)₂.

given in Tables I–V, as functions of the temperature and the composition of the system $TINO_3-CsNO_3-Cd(NO_3)_2-H_2O$, in which the mole ratios $TINO_3/CsNO_3$ and $TINO_3/Cd(NO_3)_2$ are respectively fixed at 2.18 and 1.46.

In Table I are also included the values of the molar volume Vand the excess molar volume V^{ex} . The molar volume V of a solution is related to its density ρ by

$$V = \frac{x_{\rm s} \sum_{i} X_{i} M_{i} + x_{\rm w} M_{\rm w}}{\rho} \tag{1}$$

where M_i is the molecular weight of the salt *i*, M_w , the water molecular weight, X_i , the mole fraction of the salt *i* in the anhydrous salt system, x_s , the salt mole fraction in the salt-water system, and x_w , the water mole fraction.

The excess molar volume V^{ex} is defined by

$$V^{\rm ex} = V - V^{\rm id} \tag{2}$$

where \mathcal{V}^{d} is the ideal molar volume calculated by the expression

$$V^{\rm id} = x_{\rm s} V_{\rm s} + x_{\rm m} V_{\rm m} \tag{3}$$

in which V_s and V_w are respectively the molar volume of the anhydrous salt mixture and the pure water.

Together with the values of the specific electrical conductance χ , those of the equivalent electrical conductance Λ are given in Table III. The values of Λ were obtained from χ and V by the equation

$$\Lambda = \frac{\chi V}{x_{\rm s} \sum_{i} X_{i} n_{ei}} \tag{4}$$

where n_{ei} is the electrochemical valency of the salt i.

In addition to the values of the water vapor pressure p, Table V includes those of the fugacity f_w , the activity a_w , and the activity

Table II. The Viscosity η of the T1NO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Function of Composition and Temperature^{*a*}

	$\eta \times 10^3$		$\eta \times 10^3$
T (K)	(kg m ⁻¹ s ⁻¹)	<i>T</i> (K)	$(kg m^{-1} s^{-1})$
$x_w = 0$	$x_1 = 0.467;$	$x_{\rm w} = 0.10$	$0; x_1 = 0.420;$
$x_2 = 0.2$	$x_{14}; x_{3} = 0.319$	$x_2 = 0.19$	$x_3 = 0.287$
368.9	286	369.6	143.2
373.6	213	372.6	123.0
377.9	166.2	375.7	104.7
383.2	127.7	3/8.9	90.60
207 S	105.0 84.27	382.0	75.76
396.5	71.65	385 2	69.74
399.6	64.02	388.8	60.15
402.8	56.73	393.0	52.10
r = 0.2	$00 x_1 = 0.374$	r = 0.30	$0: x_1 = 0.327$
$x_0 = 0.2$ $x_2 = 0.1$	71 : $x_2 = 0.255$	$x_0 = 0.15$	$0; x_1 = 0.327,$ $0; x_2 = 0.223$
369.3	78.35	368.3	45.18
371.7	70.58	371.4	40.39
374.4	63.12	374.4	36.40
376.8	57.05	377.5	33.02
380.6	49.97	380.1	30.51
383.2	45.57	382.1	28.91
385.7	42.00	383.6	27.67
388.7	38.18	386.3	25.62
391.3	30.31	388.4	24.24
$x_{\rm w} = 0.4$	03; $x_1 = 0.279;$	$x_{\rm w} = 0.50$	$0; x_1 = 0.233;$
$x_2 = 0.1$	$128 x_3 = 0.190$	$x_2 = 0.10$	$7 x_3 = 0.160$
366.6	26.27	366.3	14.53
369.9	23.79	368.5	13.90
3/2.3	21.99	3/1.8	12.98
3765	20.77	3775	12.50
379.7	18.34	379.6	11.10
381.9	17.45	381.7	10.67
383.6	16.76	384.3	10.17
385.6	16.13	386.3	9.75
$x_{m} = 0.6$	$30: x_1 = 0.173:$	$x_{m} = 0.70$	$0: x_1 = 0.140:$
$x_{2} = 0.0$	$79; x_3 = 0.118$	$x_2 = 0.06$	$4: x_3 = 0.096$
366.1	6.40	365.2	3.84
368.0	6.17	367.7	3.67
369.8	5.93	369.8	3.51
372.4	5.66	372.4	3.42
374.5	5.49	375.2	3.29
376.8	5.30	377.4	3.20
3/9.4	5.10	380.8	3.06
384 3	4.90	384.9	2.90
504.5	4.75	504.9	2.00
$x_{\rm w} = 0.8$	$00; x_1 = 0.093;$	$x_{\rm w} = 0.90$	$0; x_1 = 0.047;$
$x_2 = 0.0$	$143; x_3 = 0.064$	$x_2 = 0.02$	$x_1; x_3 = 0.032$
365 1	1.70	357 1	0.82
367.8	1.67	359.2	0.78
370.0	1.64	362.4	0.75
371.7	1.60	365.7	0.73
373.9	1.58	368.7	0.70
376.5	1.52	371.7	0.68
379.4	1.48	373.5	0.67
381.9	1.46	375.6	0.66

^{*a*} x_w , x_1 , x_2 , and x_3 are the mole fractions respectively of H₂O, TlNO₃, CsNO₃, and Cd(NO₃)₂.

coefficient $\gamma_{\rm w}$ of water calculated by means of the equations

$$a_{\rm w} = f_{\rm w}/f_{\rm w}^0 \tag{5}$$

$$f_{\rm w} = p \exp(Bp/RT) \tag{6}$$

$$\gamma_{\rm w} = a_{\rm w}/x_{\rm w} \tag{7}$$

where f_w^0 is the fugacity of pure water, R, the gas constant and T, the Kelvin temperature. B, the second virial coefficient of water, is given by

Table III. The Specific Electrical Conductance χ and Equivalent Electrical Conductance Λ of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Functions of Composition and Temperature^{*a*}

		$\Lambda \times 10^4$			$\Lambda \times 10^4$
	x	$(\Omega^{-1} m^2)$		x	$(\Omega^{-1} m^2)$
$T(\mathbf{K})$	$(\Omega^{-1} m^{-1})$	equiv ⁻¹)	$T(\mathbf{K})$	$(\Omega^{-1} m^{-1})$	equiv ⁻¹)
X	$= 0; x_1 = 0.4$	467;	$x_w =$	$0.100; x_1 =$	0.420;
x ₂ =	$= 0.214; x_3 =$	0.319	<i>x</i> ₂ =	$= 0.193; x_3 =$	0.287
367.6	0.91	0.42	366.8	1.49	0.71
372.5	1.18	0.55	371.7	1.86	0.88
377.6	1.52	0.71	375.2	2.15	1.03
382.3	1.89	0.88	378.2	2.43	1.16
388.5	2.36	1.10	382.6	2.83	1.36
393.4	2.81	1.31	386.5	3.24	1.55
398.6	3.35	1.57	390.9	3.73	1.79
402.3	3.75	1.76	393.8	4.08	1.96
			396.7	4.47	2.15
$x_w =$	$0.200; x_1 = 0$	0.374;	$x_{\rm w} =$	$0.300; x_1 =$	0.327;
<i>x</i> ₂ =	$= 0.171; x_3 =$	0.255	$x_2 =$	$= 0.150; x_3 =$	0.223
368.6	2.61	1.29	367.7	3.95	2.03
371.7	2.93	1.44	371.0	4.38	2.25
374.9	3.28	1.62	374.1	4.80	2.47
377.4	3.57	1.76	376.7	5.19	2.68
380.7	3.92	1.94	379.3	5.51	2.84
382.8	4.17	2.06	382.4	5.97	3.08
385.5	4.52	2.24	384.7	6.32	3.27
388.8	4.94	2.45	387.6	6.78	3.51
391.3	5.30	2.63	390.2	7.17	3.71
	0.402	370.		0.600	0.000
$x_w =$	$0.403; x_1 = 0$	J.279; 0 100	$x_w =$	$0.500; x_1 = 0.107; x_2 = 0.107; x_1 = 0.107; x_2 = 0.107; x_3 = 0.107; x_4 = 0.107; x_5 = 0.1$	0.233;
$x_2 = 2661$	$= 0.128; x_3 =$	0.190	2647	$-0.107; x_3 =$	0.100
270.0	5.00	3.10	304.7	8.13	4.70
370.0	6.50	3.33	307.5	8.90	5.20
372.3	0.00	3.75	370.8	9.57	5.60
373.4	7.41	4.04	3/3.8	10.20	5.98
3/8.3	/.91	4.32	3/0.9	10.80	6.35
381.2	8.3/	4.57	3/9.5	11.26	0.02
383./	0.03	4.83	302.4	11.90	7.01
380.1	9.23	5.07	383.3	12.57	7.41
387.5	9,40	5.19			
$x_w =$	$0.630; x_1 = 0$	0.173;	$x_w =$	$0.700; x_1 =$	0.140;
$x_{2} =$	$= 0.079; x_3 =$	0.118	$x_2 =$	$= 0.064; x_3 =$	0.096
364.9	14.40	9.72	363.8	18.99	14.41
367.1	15.04	10.16	365.6	19.59	14.88
369.9	15.78	10.68	368.0	20.37	15.49
372.1	16.34	11.07	370.7	21.22	16.16
374.3	16.94	11.49	372.6	21.76	16.60
376.3	17.47	11.86	375.8	22.61	17.28
379.4	18.07	12.28	378.2	23.17	17.74
381.8	18.67	12.71	381.0	23.90	18.32
384.4	19.31	13.16	384.4	24.71	18.98
386.3	19.77	13.48			
$x_w =$	$0.800; x_1 = 0$	0.093;	$x_w =$	$0.900; x_1 =$	0.047;
$x_2 =$	$= 0.043; x_3 =$	0.064	$x_2 = x_2$	$= 0.021; x_3 =$	0.032
361.9	27.75	27.42	333.9 266.6	33.29	55.51
303.1	28.33	28.04	333.3	33./8	56.40
303.6	28.77	28.49	33/.4	54.42	57.53
308.0	29.48	29.22	360.4	35.26	59.07
3/0.0	30.22	30.00	303.3	30.22	60.79
515.3	31.06	30.89	300.3	31.17	62.33
3/0.3	31.98	51.85	3/1.0	30.33	63.04
317.0 387 7	32.83 33.61	32.13	313.4 377 7	39.18 40 29	68 45
.10 2.1	.3.3.01			mu	UO.#.)

^a x_w , x_1 , x_2 and x_3 are the mole fractions respectively of H₂O, TlNO₃, CsNO₃, and Cd(NO₃)₂.

$$B (\rm{cm}^3 \, \rm{mol}^{-1}) = -7669 + 33.6T - 0.038T^2 \qquad (8)$$

This equation used by Sacchetto and Kodej \S^{13} was derived by fitting the values of *B* reported by O'Connell and Prausnitz¹⁴ over the temperature range 323–423 K.

Abraham e	et i	al.
-----------	------	-----

Table IV. The Surface Tension of the $TlNO_3$ -CsNO_3-Cd(NO_3)-2H_2O System, as Function of Composition

and Temperatur	ea		
	$\sigma \times 10^3$		$\sigma \times 10^3$
<i>T</i> (K)	(N m ⁻¹)	<i>T</i> (K)	(N m ⁻¹)
$\mathbf{x}_{m} = 0$	$c_1 = 0.467$	$x_{m} = 0.102$	$r_1 = 0.420$
$x_2 = 0.214$	$x_3 = 0.319$	$x_2 = 0.192$	$x_3 = 0.286$
365.3	110.9	364.7	109.6
368.3	110.5	368.8	109.0
373.2	109.8	373.4	108.5
378.3	109.3	378.3	107.9
383.2	108.6	383.2	107.4
388.2	108.0	387.7	106.8
391.4	107.7	391.0	106.4
395.6	107.1	393.2	106.1
399.0	106.6	396.5	105.7
403.6	106.0	398.0	105.3
$x_{\rm w} = 0.200$	$x_1 = 0.374;$	$x_{\rm w} = 0.300$; $x_1 = 0.327$;
$x_2 = 0.171$	$x_3 = 0.255$	$x_2 = 0.150$	$x_3 = 0.223$
358.7	109.5	362.0	106.9
362.9	109.1	363.7	106.6
365.2	108.7	366.5	106.1
369.4	108.1	369.6	105.6
373.5	107.6	372.2	105.2
3//./	107.1	3/3.4	104.6
282.7	106.0	282 2	103.9
387.2	105.2	387.6	102.4
393.2	104.9	391.4	102.0
$x_{\rm w} = 0.401$; $x_1 = 0.280;$	$x_{\rm w} = 0.502$; $x_1 = 0.232;$
$x_2 = 0.128$	$x_3 = 0.191$	$x_2 = 0.107$	$x_3 = 0.159$
362.6	103.0	360.7	99.3
365.9	102.4	364.7	98.7
309.5	101.9	308.2	90.3 07 7
376.9	100.7	376.8	97.1
380.4	100.2	380.5	96.6
383.2	99.8	383.3	96.2
387.5	99.1	387.4	95.6
390.3	98.6		
393.4	98.2		
r = 0.600	$r_{\rm r} = 0.187$	r = 0.700	$r_{\rm r} = 0.140$
$x_2 = 0.085$	$x_3 = 0.128$	$x_0 = 0.064$	$x_1 = 0.096$
360.8	94.2	358.8	84.5
362.6	93.9	361.5	84.0
365.5	93.5	363.2	83.7
368.4	93.1	365.3	83.4
371.6	92.6	368.4	82.9
374.2	92.2	371.5	82.4
3/7.5	91.7	374.7	81.9
380.4	91.2	377.0	81.4
386.4	90.8	383.7	80.6
500.4	2014	505.2	00.0
$x_{\rm w} = 0.800$; $x_1 = 0.093$;	$x_{\rm w} = 0.900$	$x_1 = 0.047;$
$x_2 = 0.043$	$x_3 = 0.064$	$x_2 = 0.021$	$x_3 = 0.032$
355.7	77.7	356.9	71.2
338.4	11.3	338./	70.8
366 4	76.1	262 7	/U.3 60 0
369.9	75.6	366 4	69.4
373.5	75.1	369.4	68.9
376.7	74.6	372.5	68.4
379.4	74.1	375.6	67.8
383.2	73.6	377.3	67.5

^a x_w , x_1 , x_2 and x_3 are the mole fractions respectively of H₂O, TlNO₃, CsNO₃, and Cd(NO₃)₂.

For pure water, the values of the density, viscosity, surface tension, and vapor pressure were taken from different sources.¹⁵⁻¹⁷

⁽¹³⁾ Sacchetto, G. A.; Kodejš, Z. J. Chem. Thermodyn. 1989, 21, 585-593.

⁽¹⁴⁾ O'Connell, J. P.; Prausnitz, J. M. Ind. Eng. Chem. Fund. 1970, 9, 579-584.

⁽¹⁵⁾ Handbook of Chemistry and Physics, 66th ed.; CRC Press: Boca Raton, FL, 1985-1986.

⁽¹⁶⁾ Kestin, J.; 590-1900. (16) Kestin, J.; Sokolov, M.; Wakeham, W. A. J. Phys. Chem. Ref. Data 1978, 7, 941-948.

⁽¹⁷⁾ Dorsey, N. E. Properties of Ordinary Water-Substance; Reinhold: New York, 1940.

Table V. The Water Vapor Pressure p, Water Fugacity f_w , Water Activity a_w , and Water Activity Coefficient γ_w of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Functions of Composition and Temperature^a

xw	\boldsymbol{x}_1	<i>x</i> ₂	<i>x</i> ₃	T (K)	p (kPa)	$f_{\rm w}$ (kPa)	a _w	γw
0.232	0.359	0.164	0.245	361.3	8.2	8.2	0.127	0.546
				370.4	11.8	11.8	0.130	0.561
				377.9	16.0	16.0	0.135	0.583
				387.0	22.5	22.4	0.141	0.606
0.307	0.324	0.148	0.221	364.7	11.4	11.4	0.155	0.505
				370.5	14.5	14.5	0.159	0.519
				378.0	18.9	18.9	0.159	0.519
				386.5	25.1	25.0	0.159	0.518
0.367	0.296	0.135	0.202	368.6	15.4	15.4	0.181	0.493
				371.1	17.0	17.0	0.183	0.497
				3/8.4	21.9	21.8	0.182	0.497
0.460	0.000	0.117	0.176	380.0	28.3	28.2	0.179	0.487
0.453	0.255	0.117	0.175	370.7	27.2	27.1	0.296	0.653
				3/8.3	33.9	35./	0.299	0.660
0.400	0.024	0.107	0.160	300.0	48.3	48.0	0.302	0.667
0.499	0.234	0.107	0.160	309.9	28.3	28.2	0.317	0.636
				3/1.0	57.0	57.0	0.320	0.642
0.604	0.195	0.085	0.136	300.2	20.1	30.8	0.320	0.034
0.004	0.165	0.085	0.120	370.0	51.5	51.7	0.422	0.098
				370.1	66.9	51.2	0.422	0.099
0.611	0.185	0.083	0.124	370.6	41.0	40.8	0.417	0.090
0.011	0.162	0.065	0.124	378 1	53.0	52.6	0.443	0.735
				387.0	724	71.8	0.450	0.725
0.654	0.162	0.074	0.110	364.8	36.5	36.3	0.492	0.752
0.054	0.102	0.074	0.110	370.6	45.5	45 2	0.495	0.757
				378.2	60.2	59.7	0.501	0.766
				386.3	78.9	78.2	0.501	0.765
0.699	0.141	0.064	0.096	362.7	41.4	41.1	0.604	0.864
0.077	0.1.11	01001	0.070	371.2	57.1	56.6	0.608	0.870
				379.0	73.1	72.4	0.592	0.847
0.746	0.119	0.054	0.081	362.2	42.7	42.4	0.635	0.851
				371.0	59.3	58.8	0.635	0.851
				378.7	76.9	76.2	0.629	0.843
0.799	0.094	0.043	0.064	362.5	48.4	48.0	0.710	0.888
				371.3	68.2	67.6	0.723	0.904
				378.9	88.3	87.3	0.715	0.895
0.800	0.093	0.043	0.064	362.7	49.3	48.9	0.718	0.897
				371.1	66.8	66.2	0.713	0.892
				378.3	85.5	84.6	0.707	0.884
0.851	0.070	0.032	0.047	362.5	55.2	54.7	0.808	0.949
				371.3	75.1	74.3	0.796	0.935
				375.4	85.5	84.5	0.782	0.919
0.903	0.045	0.021	0.031	361.8	56.9	56.4	0.856	0.948
				371.2	81.0	80.1	0.859	0.952
				379.0	105.9	104.5	0.854	0.946

^a x_w , x_1 , x_2 and x_3 are the mole fractions respectively of H₂O, T1NO₃, CsNO₃, and Cd(NO₃)₂.

3. Discussion

3.1. The Viscosity and the Equivalent Electrical Conductance. Previous investigations^{2,18-21} on molten salts and very ionic aqueous solutions have shown that approaches based on the absolute reaction rate theory^{22,23} and the quantum concept of hole^{2,8} can be fruitful as far as transport properties are concerned, although other theories are used when cooperative phenomena have to be considered in liquids of relatively high viscosity.²⁴

The Eyring equation²³ may be written in the form:

$$\eta = \frac{h}{v} \exp\left(\frac{\Delta G_{\eta}^{*}}{RT}\right) \tag{9}$$

where h is the Planck constant, v, the volume of a hole considered

(18) Bockris, J. O'M.; Kitchener, J. A.; Ignatowicz, S.; Tomlinson, J. W.
 Trans. Faraday Soc. 1952, 48, 75-91.
 (19) Janz, G. J.; Saegusa, F. J. Electrochem. Soc. 1963, 110, 452-456.

- (19) Janz, G. J.; Saegusa, F. J. Electrochem. Soc. 1963, 110, 452-456.
 (20) Bloom, H. The Chemistry of Molten Salts; W. A. Benjamin: New York, 1967.
- (21) Abraham, M.; Ziogas, I.; Abraham, M.-C. J. Soln. Chem. 1990, 19, 693-709.
 - (22) Eyring, H. J. Chem. Phys. 1936, 4, 283-291.

(23) Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes;
 McGraw-Hill: New York, 1941.
 (24) Spiro, M.; King, F. In Ionic Liquids; Inman, D., Lovering, D., Eds.;

(24) Spiro, M.; King, F. In *Ionic Liquids*; Inman, D., Lovering, D., Eds.; Plenum Press: New York, 1981; Chapter 5. to be close to that of a particle,^{2,23} and ΔG_{η}^* , the molar free energy of activation for the viscous flow.

In the case of a salt-water system, v is obviously an average parameter, like ΔG_{η}^* , which depends on the nature of the flow units originating from the salt and the water. Species involved in the viscous flow mechanisms are not known and one might suppose the existence of ion pairs, complex ion clusters, etc. At first sight, two relatively simple situations are worth examining in order to estimate the extent to which ΔG_{η}^* may be subject to an error due to the uncertainty attached to v.

Assuming the flow units to be the water molecules and the salt entities (Tl⁺, NO₃⁻), (Cs⁺, NO₃⁻), and (Cd²⁺, 2 NO₃⁻), v is expressed by

$$v = V/N_{\rm A} \tag{10}$$

where N_A is the Avogadro constant.

If the flow units are the water molecules and the ions Tl^+ , Cs^+ , Cd^{2+} , and NO_3^- , v is expressed by

$$v = \frac{V}{N_{\rm A}[x_{\rm s} \sum X_i(\nu_{i-} + \nu_{i+}) + x_{\rm w}]}$$
(11)

Figure 1. The free energy of activation for the viscosity ΔG_{η}^* and the free energy of activation for the equivalent electrical conductance ΔG_{Λ}^* as functions of the water mole fraction x_w , for the T1NO₃-CsNO₃-Cd-(NO₃)₂-H₂O system, at 372 K: (1) ΔG_{Λ}^* ; (2) ΔG_{η}^* with v given by eq 10; (3) ΔG_{η}^* with v given by eq 11.

where v_{i+} and v_{i-} are the number of cations and anions produced by the dissociation of 1 mole of the electrolyte *i*.

In Figure 1, ΔG_{η}^* is plotted against x_w , at 372 K, using values of v given by eq 10 (curve 2) and eq 11 (curve 3). For the anhydrous molten salt, the two alternatives in the evaluation of v lead to a difference in ΔG_{η}^* of less than 10%, and, in both cases, ΔG_{η}^* is a linear function of x_w between 0 and ~0.5.

Application of the absolute reaction rate theory to the equivalent electrical conductance requires, in principle, knowledge of one-half the migration distance d_i , across the potential barriers, of any electrical charge carrier and its free energy of activation $\Delta G_{\Lambda i}^*$. Since these parameters are not known, the following extension of an equation proposed by Stearn and Eyring²⁵ was suggested⁸ in order to provide an average value of the free energy of activation:

$$\Lambda = \mathcal{A} V^{2/3} \left(\frac{1}{1 - B_{\rm D}} \right) B_{\rm d}^{2/3} B_{\rm z} \exp\left(-\frac{\Delta G_{\Lambda}^{*}}{RT} \right) \qquad (12)$$

$$A = \frac{8}{3} \left(\frac{3}{4\pi}\right)^{2/3} \frac{F^2}{h N_A^{5/3}}$$
(13)

$$B_{\rm D} = x_{\rm s} \frac{V_{\rm s}(D_{\rm s}-1)}{V(D_{\rm s}+2)} + x_{\rm w} \frac{V_{\rm w}(D_{\rm w}-1)}{V(D_{\rm w}+2)}$$
(14)

$$B_{\rm d} = \frac{1}{x_{\rm s} \sum X_i(\nu_{i-} + \nu_{i+}) + x_{\rm w}}$$
(15)

$$B_{z} = \frac{\sum_{i} X_{i} n_{ei}}{\sum_{i} X_{i} (\nu_{i-} + \nu_{i+})}$$
(16)

where F is the Faraday constant, and D_s and D_w are the dielectric constants of the pure salt and the pure water. For the pure water, the values of D_w were estimated from its known values between 0 and 100 °C.¹⁵ For the salt mixture, the average value 2 was assigned to D_s , since for several nitrates the values of D_s are about $1.5-2.5.^{26}$

It is observed in Figure 1 that ΔG_{Λ}^* , at a given temperature, is a quasi-linear function of x_w over the very large concentration range $x_w = 0 - 0.9$.

From ΔG^* , follow the entropy of activation ΔS^* and the enthalpy of activation ΔH^* by means of the equations:

$$\Delta S^* = -\delta \Delta G^* / \delta T \tag{17}$$

$$\Delta H^* = \Delta G^* + T \Delta S^* \tag{18}$$

Figure 2. The entropy of activation for the viscosity ΔS_{η}^* and the entropy of activation for the equivalent electrical conductance ΔS_{Λ}^* as functions of the water mole fraction x_w , for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system: (1) ΔS_{η}^* with v given by eq 11; (2) ΔS_{η}^* with v given by eq 10; (3) ΔS_{Λ}^* .

Figure 3. The enthalpy of activation for the viscosity ΔH_{η}^* and the enthalpy of activation for the equivalent electrical conductance ΔH_{Λ}^* as functions of the water mole fraction x_{w} , for the TlNO₃-CsNO₃-Cd-(NO₃)₂-H₂O system: (1) ΔH_{η}^* ; (2) ΔH_{Λ}^* .

In Figures 2 and 3, the average values of ΔS_{η}^{*} , ΔS_{Λ}^{*} , ΔH_{η}^{*} , and ΔH_{Λ}^{*} valid over the explored temperature ranges are plotted against x_{w} .

Hole theories predict that ΔH_{η}^* of molten salt mixtures should increase with the component freezing points.^{27,28} This effect is observed, for example, when salts such as Cd(NO₃)₂ and CsNO₃ are added to the AgNO₃-TlNO₃ mixture.²⁸ For the AgNO₃-TlNO₃ and the TlNO₃-CsNO₃-Cd(NO₃)₂ mixtures, the values of ΔH_{η}^* are 29 and 58 kJ mol⁻¹, respectively, the latter value presumably due to the high CsNO₃ and Cd(NO₃)₂ concentrations.

Supercooling of the anhydrous TINO₃-CsNO₃-Cd(NO₃)₂ system occurs sometimes, casting doubts on the reported freezing point.⁵ In this kind of electrolyte having a quasi-lattice structure, there is alternation of monovalent cations and divalent cations for electrostatic reason. This alternate distribution has to be broken up in order that a pure component might crystallize.²⁹ Supercooling could be a consequence of the inaptitude of certain sort of particles for passing over high potential barriers arising in such structural rearrangement.²⁹⁻³¹ Since the existence of these barriers should be reflected in ΔH_{η}^* , high values of this parameter may be exhibited by ionic mixtures having a great tendency to supercool.

In contrast to the AgNO₃-TlNO₃-H₂O system for which ΔH_{η}^* and ΔH_{Λ}^* are close to one another over the whole water concentration range,³² for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system these parameters have the same order of magnitude only

- (29) Urnes, S. Glastechn. Ber. 1961, 34, 213-215.
- (30) Abraham, M.; Gauthier, M. Electrochim. Acta 1972, 17, 1235–1241. (31) Inman, D.; Bowling, J. E.; Lovering, D. G.; White, S. H. In

⁽²⁵⁾ Stearn, A. E.; Eyring, H. J. Chem. Phys. 1937, 5, 113-124. (26) Janz, G. J. Molten Salts Handbook; Academic Press: New York, 1967.

⁽²⁷⁾ Emi, T.; Bockris, J. O'M. J. Phys. Chem. 1970, 74, 159-163.

⁽²⁸⁾ Abraham, M.; Abraham, M.-C. J. Chim. Phys. 1986, 83, 115-121.

Electrochemistry; The Chemical Society, Burlington House: London, 1974; Vol. 4, Chapter 5, p 105.

⁽³²⁾ Abraham, M.; Abraham, M.-C. Electrochim. Acta 1987, 32, 1475-1487.

Table VI. The Apparent Fluidity of Pure Water, ϕ'_w , and the Apparent Equivalent Electric Conductance of the Salt at Infinite Dilution, Λ'_{∞} of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O System, Compared to the Fluidity of the Pure Water, ϕ_w , the Fluidity of the Pure Salt, ϕ_s , and the Equivalent Electric Conductance of the Pure Salt Λ_s , as Functions of Temperature

Т (К)	$\phi_{\rm w}$ (kg ⁻¹ m s)	φ _s (kg ⁻¹ m s)	$\phi'_{\rm w} (\rm kg^{-1}ms)$	$\Lambda_{\rm s} \times 10^4$ ($\Omega^{-1} { m m}^2$ equiv ⁻¹)	$\Lambda'_{\infty} \times 10^4$ ($\Omega^{-1} m^2$ equiv ⁻¹)
365	4010	3.03	1490	0.40	62.6
372	4323	4.28	1380	0.53	61.1
380	4720	6.46	1270	0.76	59.4
388	5123	9.46	1170	1.05	57.9

in the case of the water-rich solutions. At low values of x_w , their difference increases, reaching a maximum for the anhydrous molten salt. Most striking is the manner in which ΔH^* and ΔS^* combine to bring about the shapes of ΔG^* , especially in the case of ΔG_{Λ}^* . Although both functions ΔS_{Λ}^* and ΔH_{Λ}^* have a pronounced curvature over the interval $x_w = 0-0.9$, they compensate one another, yielding an almost straight line to represent ΔG_{Λ}^* . This is also observed with ΔH_{η}^* and ΔS_{η}^* , but in a narrower range, $x_w = 0-0.5$. Curiously enough, concerning the anhydrous salt, ΔG_{Λ}^* is close to ΔG_{η}^* if the viscous flow units are assumed to be the entities (Tl⁺, NO₃⁻), (Cs⁺, NO₃⁻), and (Cd²⁺, 2NO₃⁻), even though the enthalpy and entropy contributions are different for the two transport properties.

Over the range $x_w = 0 - 0.5$, the fact that ΔG^* is a linear function of x_w may be a fundamental reason why the following equations, each of them containing only one adjustable parameter, ϕ_w' and Λ_{∞}' , are found to hold:¹⁰

$$\phi = (\phi_{\rm s})^{x_{\rm s}} (\phi_{\rm w}')^{x_{\rm w}}$$
(19)

$$\Lambda = (\Lambda_{\rm s})^{x_{\rm s}} (\Lambda_{\infty}')^{x_{\rm w}}$$
(20)

where, in eq 19, ϕ is the fluidity of the solution, i.e., the reciprocal of its viscosity, and ϕ_s is the experimental fluidity of the pure salt. ϕ_w' , called the apparent fluidity of the pure water, plays formally a role analogous to that of ϕ_s . The parameter ϕ_w' is a characteristic of the water dissolved in the molten salt, considered as a fluid distinguishable from pure water. In eq 20, Λ is the equivalent electrical conductance of the solution, and Λ_s is the experimental equivalent electrical conductance of the pure salt. $\Lambda_{\omega'}$, called the apparent equivalent electrical conductance of the salt at infinite dilution, represents the equivalent electrical conductance at infinite dilution the salt would exhibit if the properties of pure water were the same as those of the water dissolved in the salt whose fluidity is ϕ_w' .

The values of ϕ_w' and Λ_w' at various temperatures are listed in Table VI, together with those of ϕ_s , Λ_s , and the fluidity of the pure water, ϕ_w . As may be seen in this table, the influence of the temperature on the apparent parameters ϕ_w' and Λ_w' is opposite to that on ϕ_w , ϕ_s , and Λ_s . A peculiar feature to notice is the similarity between the behavior of the water dissolved in the salt and that of gaseous substances. Although the order of magnitude of ϕ_w' is that of a condensed phase, this parameter decreases as the temperature increases like the water vapor fluidity.^{15,21}

3.2. The Water Activity. In a recent study, Trudelle-Abraham³ drew the conclusion that the approach based on the BET model³³ adapted to electrolyte solutions³⁴ is most relevant to express the relationship between the activity and the concentration of water in very ionic solutions. For instance, contrary to the Pitzer equation,³⁵ based on regular solution theories, the Stokes and Robinson equation³⁴ is compatible with the possible

coexistence of negative and positive deviations of the water activity with respect to the Raoult law, for a given salt-water system.^{3,36,37}

Taking into account the modification introduced into the BET model by Anderson,³⁸ the Stokes and Robinson equation is written³⁴

$$\frac{a_{w}(1-x_{w})}{x_{w}(1-ba_{w})} = \frac{1}{bcr} + \frac{c-1}{cr}a_{w}$$
(21)

in which b, c, and r are constants.

The constants b and c are expressed by:

$$b = \exp[-(E_{\rm b} - E_{\rm L})/RT]$$
(22)

$$c = \exp[-(E - E_{\rm b})/RT]$$
(23)

in which E is the molar binding energy of water on sites close to the ions, usually considered to be cations, E_b , is the molar binding energy of water in multilayer hydration sphere of the ions where the nearest neighbors are only water molecules, and E_L is the molar binding energy of water in pure water (heat of liquefaction).

The constant r is given by:

$$r = N_{\rm si}/N_{\rm A} \tag{24}$$

where N_{si} is the number of available sites with the binding energy E for the water molecules, per mole of salt.

The values of b, c, r, $(E_b - E_L)$, and $(E - E_b)$, at different temperatures, obtained by nonlinear least-squares fitting of eq 21 to the experimental data, using Marquardt method, are listed in Table VII. As an illustration, the curve calculated by means of eq 21, at 372 K, is compared with the experimental data in Figure 4. It is seen that the agreement is good over the large water mole fraction range $x_w = \sim 0.2-0.9$.

We may observe in Table VII that E_b is very close to E_L , so that the BET constants c and r are sufficient to compute the water activity, as was done with other highly ionic melts.^{3,39}

It is interesting to notice that the order of magnitude of the BET constant r could have been predicted from the results obtained with other nitrate-water systems containing Tl⁺, Cs⁺, and Cd²⁺ ions. Using values attributed to single salts by an extrapolation procedure previously used,³ i.e., r = 0.3, 0.8, and 3.7 respectively for TlNO₃, CsNO₃, and Cd(NO₃)₂, at 372 K, one obtains for the present study $r = (0.467 \times 0.3) + (0.214 \times 0.8) + (0.319 \times 3.7) = 1.5$, to be compared with r = 1.4.

Although eq 21 was developed from simplifying assumptions, it provides a convenient method for the determination of the Henry law constant $K_{\rm H}$ for the dissolution of water in molten salts.^{3,39,40} This constant is related to $f_{\rm w}^0$ and the water activity coefficient at infinite dilution in the salt $\gamma_{\rm w}^\infty$ by the equation

$$K_{\rm H} = f_{\rm w}^0 \gamma_{\rm w}^\infty \tag{25}$$

The activity coefficient γ_w^{\sim} is obtained from the BET constants by

$$\gamma_{w}^{\infty} = 1/bcr \tag{26}$$

Values of γ_{w}^{*} and K_{H} are listed in Table VII as functions of the temperature.

Comparison of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system with the AgNO₃-TlNO₃-H₂O system previously studied³ clearly illustrates the influence of the hydrating power of the cations on the Henry law constant.^{40,41} For example, at 372 K, $K_{\rm H}$ = 31 kPa

⁽³³⁾ Brunauer, S.; Emmet, P. M.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.

⁽³⁴⁾ Stokes, R. H.; Robinson, R. A. J. Am. Chem. Soc. 1948, 70, 1870-1878.

⁽³⁵⁾ Pitzer, K. S. J. Am. Chem. Soc. 1980, 102, 2902-2906.

⁽³⁶⁾ Abraham, M.-C.; Abraham, M.; Sangster, J. M. Can. J. Chem. 1978, 56, 348-351.

⁽³⁷⁾ Sangster, J.; Abraham, M.-C.; Abraham, M. J. Chem. Thermodyn. 1979, 11, 619-625.

⁽³⁸⁾ Anderson, R. B. J. Am. Chem. Soc. 1946, 68, 686-690.

⁽³⁹⁾ Braunstein, H.; Braunstein, J. J. Chem. Thermodyn. 1971, 3, 419–431.
(40) Abraham, M.-C.; Abraham, M.; Sangster, J. M. Can. J. Chem. 1978,

⁽⁴¹⁾ Tripp, T. B. J. Electrochem. Soc. **1987**, *134*, 848–855.

Table VII. The BET Constants c, r, and b in Eq 21, $(E - E_b)$ in Eq 22, $(E_b - E_L)$ in Eq 23, Activity Coefficient of Water at Infinite Dilution in the Salt γ_{w}^{w} , and the Henry Law Constant K_H of the TINO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Functions of Temperature

<i>T</i> (K)	r	с	ь	$(E-E_b)$ (kJ mol ⁻¹)	$(E_{\rm b}-E_{\rm L})~({\rm kJ~mol^{-1}})$	$\boldsymbol{\gamma}^{\infty}_{\mathrm{w}}$	K _H (kPa)
365	1.35	2.38	0.994	-2.63	0.02	0.314	23.6
372	1.38	2.25	0.994	-2.51	0.02	0.324	31.2
380	1.41	2.12	0.995	-2.37	0.02	0.336	43.3
388	1.43	2.03	0.995	-2.28	0.02	0.345	58.1

Figure 4. The water activity a_w calculated by means of eq 21 as a function of the water mole fraction x_w , for the T1NO₃-CsNO₃-Cd(NO₃)₂-H₂O system, at 372 K.

Figure 5. The logarithm of the Henry law constant ln $K_{\rm H}$ as a function of the reciprocal of the temperature T^{-1} : (1) 0.515AgNO₃-0.485TlNO₃ + H₂O; (2) 0.467TlNO₃-0.214CsNO₃-0.319Cd(NO₃)₂ + H₂O.

for the system containing the strongly hydrated Cd^{2+} ions at high concentration, whereas the system which contains the relatively weakly hydrated Ag⁺ and Tl⁺ ions has the much higher $K_{\rm H} = 127$ kPa.

The molar enthalpy of vaporization of water at infinite dilution in the molten salt ΔH_{ν}^{∞} , valid over given temperature ranges, may be calculated by the equation

$$\frac{d\ln K_{\rm H}}{d(1/T)} = -\frac{\Delta H_{\rm v}^{\infty}}{R} \tag{27}$$

In Figure 5, ln $K_{\rm H}$ is shown plotted against T^{-1} for the two systems TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O and AgNO₃-TlNO₃-H₂O,^{3,42} whose ΔH_{ν}^{∞} values are 46 and 39 kJ mol⁻¹, respectively. It is seen that the aptitude of the Cd²⁺ ions to lower the tendency of water to escape from the molten salts is also apparent in ΔH_{ν}^{∞} .

3.3. The Volumetric Properties. The BET theory adapted to electrolyte solutions has also proved to be fruitful in the case of volumetric studies. Over the range $x_w = 0 - 0.5$, the following equation based on this model was proposed by Abraham,⁴³ relating the excess molar volume V^{ex} to the water activity a_w :

$$V^{\text{ex}} = x_{\text{w}}(1 - a_{\text{w}})(V_{\text{w}}^{\infty} - V_{\text{w}} + A_{\text{v}}x_{\text{w}})$$
(28)

where V_w^{∞} is the apparent molar volume of water at infinite dilution in the molten salt, and A_v is an empirical parameter

Figure 6. The expression $V^{ex}/[x_w(1-a_w)]$ as a function of the water mole fraction x_w , for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system, at 376 K.

Table VIII The Parameters A_v and $(V_w^w - V_w)$ in Eq 28 and the Apparent Molar Volume of Water at Infinite Dilution in the Molten Salt V_w^w

salt composition	<i>T</i> (K)	$A_v \times 10^6$ (m ³ mol ⁻¹)	$(V_{w}^{\infty} - V_{w}) \times 10^{6} (m^{3} \text{ mol}^{-1})$	$V_{m}^{\infty} \times 10^{6}$ (m ³ mol ⁻¹)
0.467T1NO ₃ -0.214CsNO ₃ - 0.319Cd(NO ₃) ₂	368	-2.2	-2.8	15.9
	376	-1.7	-3.0	15.8
	383	-1.4	-3.2	15.7
0.515AgNO ₃ -0.485T1NO ₃	353	-6.3	-0.7	17.9
-	363	-6.2	-0.8	17.9
	372	-6.6	0.7	18.0
0.464AgNO ₃ -0.436T1NO ₃ - 0.100CsNO ₃	372	-5.0	-1.1	17.7
0.464AgNO ₃ -0.436T1NO ₃ - 0.100Cd(NO ₃) ₂	372	-2.7	-2.3	16.5

independent of x_w . Values of A_v and $(V_w^{\infty} - V_w)$ were discussed in terms of a competition between two mechanisms of water insertion in the salt on the basis of quasi-lattice and hole theories: an s-mechanism, whereby water molecules are substituted for ions followed by the introduction of holes, and an i-mechanism, whereby available interstices or empty sites are filled by water molecules. This approach lead to the following relations:

$$A_{v} = (\partial P_{i-m} / \partial x_{w}) (V_{i-m}^{\infty} - V_{s-m}^{\infty})$$
(29)

$$V_{w}^{\infty} = P_{s-m}^{\infty} V_{s-m}^{\infty} + P_{i-m}^{\infty} V_{i-m}^{\infty}$$
(30)

 $P_{i,m}$ is the probability of occurrence of the i-mechanism assumed to be a linear function of x_w in the validity range of the BET model, as suggested by the experimental data. $P_{i,m}^{\infty}$ and $P_{s,m}^{\infty}$ are the probabilities of occurrence of the i-mechanism and the s-mechanism, respectively, at infinite dilution in the molten salt. $V_{s,m}^{\infty}$ and $V_{s,m}^{\infty}$ are the apparent molar volumes of water at infinite dilution in the molten salt introduced respectively by the i-mechanism and the s-mechanism. Since the s-mechanism induces a dilation effect and the i-mechanism, a contraction effect:

$$V_{i-m}^{\infty} - V_{s-m}^{\infty} < 0 \tag{31}$$

Equation 28 is found to be valid also for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system, as shown in Figure 6, where the expression $V^{ex}/[x_w(1-a_w)]$ is plotted against x_w , at 376 K. Table VIII gives the values of A_v , $(V_w^w - V_w)$, and V_w^w for the studied

⁽⁴²⁾ Abraham, M.-C.; Abraham, M.; Sangster, J. M. Can. J. Chem. 1980, 58, 1480-1483.

⁽⁴³⁾ Abraham, M. J. Chim. Phys. 1984, 81, 207-212.

Table IX. The Surface Enthalpy H_{σ} and Surface Entropy S_{σ} , per Unit Area, of the T1NO₃-CsNO₃-Cd(NO₃)₂-H₂O System, as Functions of Composition^a

xw	<i>x</i> ₁	<i>x</i> ₂	x 3	$H_{\sigma} \times 10^3 ({\rm N} {\rm m}^{-1})$	$S_{\sigma} \times 10^{6} (\text{N m}^{-1} \text{ K}^{-1})$	correl coeff of eq 32
0	0.467	0.214	0.319	156.9	126.0	0.9994
0.102	0.420	0.192	0.286	154.3	122.6	0.9991
0.200	0.374	0.171	0.255	158.3	135.9	0.9993
0.300	0.327	0.150	0.223	167.6	167.8	0.9997
0.401	0.280	0.128	0.191	159.1	154.8	0.9997
0.502	0.232	0.107	0.159	148.8	137.3	0.9997
0.600	0.187	0.085	0.128	148.4	150.3	0.9997
0.700	0.140	0.064	0.096	141.6	159.4	0.9997
0.800	0.093	0.043	0.064	130.8	149.2	0.9997
0.900	0.047	0.021	0.032	135.1	179.2	0.9997
1	0	0	0	125.4	178.0	

^a x_w , x_1 , x_2 and x_3 are the mole fractions respectively of H₂O, T1NO₃, CsNO₃, and Cd(NO₃)₂.

Figure 7. The surface tension σ as a function of the water mole fraction x_w , at 372 K: (1) 0.464AgNO₃-0.436T1NO₃-0.100Cd(NO₃)₂ + H₂O; (2) 0.467T1NO₃-0.214CsNO₃-0.319Cd(NO₃)₂ + H₂O; (3) 0.515AgNO₃-0.485T1NO₃ + H₂O.

system and other salt-water systems.^{3,43} It can be seen that the $TINO_3$ -CsNO_3-Cd(NO_3)_2-H_2O system has the highest value of A_v and the smallest value of V_w^{∞} as a consequence of the presence, at a high concentration, of the Cd^{2+} cation. In effect, the values of V_{w}^{∞} represent in a significant manner the enhanced electrostriction effects due to the presence of Cd2+. Moreover, the values of A_{ν} may be interpreted in terms of structural perturbations of the molten salt quasi-lattice by water. For a given molten salt system, as water is dissolved in the salt, hydrogen bonds and cation-water dipole bonds, which have a more directional character than highly ionic bonds, will impose structure with larger free volume, whence, an increase of P_{i-m} with x_w , a positive value of $(\partial P_{i-m}/\partial x_w)$ and a negative value of A_v . This parameter is less negative in the case of melts containing Cd²⁺ because water is then less likely to perturb the salt quasi-lattice and to create free volume, due to the strong interactions of Cd^{2+} with NO_3^{-} .

3.4. The Surface Phase. At a fixed water mole fraction, the surface tension σ may be expressed as function of the temperature T by

$$\sigma = \mathbf{H}_{\sigma} - S_{\sigma}T \tag{32}$$

where H_{σ} is the surface enthalpy and S_{σ} , the surface entropy, per unit area.

Over the explored temperature ranges, H_{σ} and S_{σ} are independent of T, as for other nitrate-water systems.¹ Their values are listed in Table IX as functions of the composition. Equation 32 allows one to calculate σ at a fixed temperature, for each composition.

Figure 7 summarizes the surface tensions of the studied system and two other systems¹ for comparison, as a function of the water mole fraction, at a given temperature, 372 K. Over the whole concentration range, the curve $\sigma = f(x_w)$ of the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system is concave to the abscissa in opposition to the AgNO₃-TlNO₃-H₂O system, whose curve is convex to the abscissa. More than likely, this striking difference is due to the presence at high concentration of the divalent cation Cd²⁺, having a strong hydrating power. In effect, upon addition of Cd²⁺ at 10 mol % to the AgNO₃-TlNO₃-H₂O system, its curve is distorted, exhibiting a change from convex to concave for very dilute solutions of water in the salt.

From the surface tension and water activity data, an estimation of the surface water mole fraction can be made by application of the Guggenheim and Adam method^{44,45} as follows.

The Gibbs adsorption formula is written

$$\Gamma_{w(s)} = -\frac{1}{kT} \frac{d\sigma}{d\ln a_{w}}$$
(33)

where k is the Boltzmann constant and $\Gamma_{w(s)}$, the Gibbs parameter which measures the adsorption of water per unit area, relative to the salt.

 $\Gamma_{w(s)}$ is related to the number of water molecules, Γ_{w} , and the number of salt entities (M²⁺, zNO₃⁻), Γ_{s} , per unit area, by

$$\Gamma_{w(s)} = \Gamma_w - \Gamma_s \frac{x_w}{1 - x_w}$$
(34)

With the assumption of a liquid quasi-lattice having a monolayer surface phase⁴⁵, Γ_w and Γ_s are related to the water molecular area A_w and to the salt entity area A_s by the equation

$$\Gamma_{\rm s}A_{\rm s} + \Gamma_{\rm w}A_{\rm w} = 1 \tag{35}$$

The water mole fraction in the surface phase $x_{w'}$ is then obtained by

$$x_{\rm w}' = \Gamma_{\rm w} / (\Gamma_{\rm w} + \Gamma_{\rm s}) \tag{36}$$

 $A_{\rm w}$ and $A_{\rm s}$ were calculated by the equations¹

$$A_{\rm w} = \pi r_{\rm w}^{2} \tag{37}$$

$$A_{\rm s} = \pi \sum_{i} X_{i} (r_{i+}^{2} + z_{i+}^{2} r_{-}^{2})$$
(38)

in which r_w is the water radius,⁴⁶ r_- , the NO₃⁻ radius,⁴⁷ r_{i+} , the cation *i* radius,¹⁵ and z_{i+} , the cation *i* valency.

The water mole fraction in the surface phase $x_{w'}$ is shown plotted against the water mole fraction in the bulk phase x_{w} , at 372 K, in Figure 8, for the studied system and three other systems which do not contain Cd²⁺ at high concentration. It is seen that the values of $x_{w'}$ for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system are sensitively lower than for the other systems, reflecting the tendency of the Cd²⁺ cations to attract water molecules.

In studies on the surface tension and the viscosity of molten carbonates,¹⁹ molten nitrates, and aqueous solutions of nitrates,¹ the free energy of activation of the viscous flow in eq 9 was compared to the free energy of hole formation as expressed in the

⁽⁴⁴⁾ Guggenheim, E. A.; Adam, N. K. Proc. R. Soc. London 1933, A139, 218-236.

⁽⁴⁵⁾ Guggenheim, E. A. Mixtures; Clarendon Press: Oxford, 1952; pp 169-172.

⁽⁴⁶⁾ Marcus, Y. J. Soln. Chem. 1983, 12, 271-275.

⁽⁴⁷⁾ Waddington, T. C. In Advances in Inorganic Chemistry and Radiochemistry; Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press: New York, 1959, Vol. I; p 180.

Figure 8. The water mole fraction in the surface phase x_w' as a function of the water mole fraction in the bulk phase x_w , at 372 K: (1) 0.467T1NO₃-0.214CsNO₃-0.319Cd(NO₃)₂ + H₂O; (2) (∇) 0.464AgNO₃-0.436T1-NO₃-0.100Cd(NO₃)₂ + H₂O and (Δ) 0.515AgNO₃-0.485T1NO₃ + H₂O; (3) 0.464AgNO₃-0.436T1NO₃-0.100CsNO₃ + H₂O.

Fürth⁴⁸ theory of liquids. For the studied system, average values of the free energy of hole formation $\overline{\Delta G}_{\sigma}$ were calculated by an equation previously proposed for salt-water systems:¹

$$\overline{\Delta G_{\sigma}} = 4\pi\sigma N_{A} \frac{x_{s} [\sum_{i} X_{i} (r_{i+}^{2} + z_{i+}r_{-}^{2})] + x_{w}r_{w}^{2}}{x_{s} [\sum_{i} X_{i} (1 + z_{i+})] + x_{w}}$$
(39)

Concerning ΔG_{η}^* , the values of v in eq 9 can be calculated using either the expressions 10 or 11, or by the simplified procedure based on the particles radii:

$$v = \frac{4}{3} \pi \frac{x_{s} [\sum_{i} X_{i} (r_{i+}^{3} + z_{i+} r_{-}^{3})] + x_{w} r_{w}^{3}}{x_{s} [\sum_{i} X_{i} (1 + z_{i+})] + x_{w}}$$
(40)

In Figure 9, ΔG_{σ} and ΔG_{η}^* are plotted against x_w at 372 K. Over the large concentration range $x_w = -0.4-1$, and especially when v is evaluated by eq 11, ΔG_{σ} and ΔG_{η}^* have, roughly, the same order of magnitude. Yet, for the dilute solutions of water in the molten salt, the difference between ΔG_{σ} and ΔG_{η}^* is greater, contrary to what was observed with other nitrate-water systems.¹ This behavior could presumably be attributed to the high degree of quasi-crystalline character of this ternary molten salt mixture containing a great amount of Cd²⁺ cations, and all the more pronounced as the temperature is relatively low. As a matter of fact, an important effect of substituting divalent for

Figure 9. The free energy of hole formation $\overline{\Delta G_{\sigma}}$ and the free energy of activation for the viscosity ΔG_{η}^* as functions of the water mole fraction x_{w_1} for the TlNO₃-CsNO₃-Cd(NO₃)₂-H₂O system, at 372 K: (1) ΔG_{η}^* with v given by eq 10; (2) ΔG_{η}^* with v given by eq 11; (3) $\overline{\Delta G_{\sigma}}$; (4) ΔG_{η}^* with v given by eq 40.

monovalent cations is to intensify the cationic electrical field and to strengthen the structure of the liquid quasi-lattice which will become more crystal-like, particularly near the pure fused salt.²¹ In this case, the vacancy model could perhaps be more appropriate to represent the physical reality of the liquid than the hole model on which eq 39 is based.²⁸

4. Conclusion

Other approaches than those used in the discussion may be applied to the study of the thermodynamic, transport, and volumetric properties of highly ionic liquids. However, the new bridging salt-water system investigated in the present work again draws attention to the relevance of the BET model, the transitionstate theory, and the hole and liquid quasi-lattice concepts to ionic liquids, from pure fused salts to dilute aqueous solutions. A remarkable feature of this study is the use of equations which are valid over large water concentration range, using few empirical parameters, in some cases only one. In effect, over the water concentration range $x_w = 0 - - 0.5$, with regard to the fluidity and the equivalent electrical conductance, only one empirical parameter is needed to represent the experimental data in a satisfactory manner. In the same range, the excess molar volumes can be related to the water activity by means of an equation based on the BET model which contains two empirical parameters. It must also be pointed out that the equation based on the BET model which represents the water activity as a function of the water mole fraction can be applied over an unusually large water concentration range, up to $x_w = -0.9$. And, moreover, the empirical parameters appear to be chemically significant as to the influence of the nature of the ions and the effect of the temperature.

⁽⁴⁸⁾ Fürth, R. Proc. R. Soc. Camb. Phil. Soc. 1941, 27, 252-275.